Gas-particle partitioning (POPs)

For the description of POP partitioning between the gaseous and particulate phase in the atmosphere the three model parameterizations can be applied: the Junge-Pankow model [*Junge*, 1977; *Pankow*, 1987], the *K*_{OA} absorption model [*Pankow*, 1994,1997; *Harner and Bidleman*, 1998], and dual model of absorption to organic matter and adsorption to black carbon in the aerosol particles [*Dachs and Eisenreich*, 2000; *Lohmann and Lammel*, 2004].

Junge-Pankow adsorption model [Junge, 1977, Pankow, 1987]

$$\varphi^{ad} = c \frac{S}{(p_L^0 + cS)'}$$

where: φ^{ad} is the fraction of particulate phase of the compound; *S* is the aerosol surface density, m²surface/m³air; p_L^0 is the subcooled liquid vapor pressure of the compound, Pa; *c* is a parameter assumed to be equal to 0.172 Pa m.

K_{0A} absorption model [Pankow, 1994; 1997; Harner and Bidleman, 1998]

$$\varphi^{ab} = K_p^{OM} \frac{TSP}{\left(1 + K_p^{OM} TSP\right)}$$

where *TSP* is the concentration of suspended particulate matter, $\mu g/m^3$,

and K_p^{OM} is given by:

$$K_p^{\rm OM} = 10^{-12} \cdot f_{\rm OM} \cdot M_{oct} \cdot \gamma_{oct} \cdot K_{OA} / (M_{\rm OM} \cdot \gamma_{OM} \cdot \rho_{oct}),$$

where f_{OM} is the fraction of organic matter in aerosol, and $p_{oct} = 0.82$ kg/L is the density of octanol.

It can be assumed that γ_{oct}/γ_{OM} equals 1 [*Harner and Bidleman*, 1998], and M_{oct}/M_{OM} equals 0.26 [*Efstathiou et.al.*, 2016; *Harner and Bidleman*, 1998] assume this ratio to be equal to 1). With these assumptions the following formula can be used:

$$\log K_p^{OM} = \log K_{OA} + \log f_{OM} + 11.91).$$

Dual model of absorption to OM and absorption to BS [*Dachs and Eisenreich*, 2000; *Lohmann and Lammel*, 2004]

$$\varphi^{ab+bc} = K_p^{ab+bc} \frac{TSP}{\left(1 + K_p^{ab+bc}TSP\right)'}$$

where *TSP* is the concentration of suspended particulate matter, $\mu g/m^3$, and K_p^{ab+bx} is given by:

$$K_p^{ab+bc} = 10^{-12} (K_{oa} \cdot f_{OM} \cdot M_{oct} \cdot \gamma_{oct} / (M_{OM} \cdot \gamma_{OM} \cdot \rho_{oct}) + f_{BC} \cdot a_{atm_BC} \cdot K_{SA} / (a_{soot} \cdot \rho_{BC})),$$

where f_{OM} is, as earlier, the fraction of organic matter, and f_{BC} is the fraction of black (elemental) carbon in aerosol. Assuming, in addition to the above assumptions, the ratio of surface densities a_{atm_BC}/a_{soot} to be 1, we rewrite the latter equation in the form:

$$K_p^{ab+bc} = 10^{-12} (0.32 f_{OM} \cdot K_{oa} + 0.55 f_{BC} \cdot K_{SA}),$$

The soot-air partition coefficient can be calculated by the relation [van Noort, 2003]:

$$\log K_{SA} = -0.85 \log p_L^0 + \log(998/a_{soot}) + 8.94),$$

where a_{soot} is assumed to be 18.21 m²/g [*Efstathiou et.al.*, 2016].

- Dachs J. and S. J.Eisenreich [2000] Adsorption onto Aerosol Soot Carbon Dominates Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons. *Environ. Sci. Technol.* 2000, **34**, 3690-3697.
- Efstathiou C.I., J. Matejovicová, J. Bieser, and G. Lammel [2016] Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants. *Atmos. Chem. Phys.*, **16**, 15327–15345.
- Harner T. and T. F. Bidleman [1998] Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. *Environ. Sci. Technol.*, **32**, 1494–1502, doi:10.1021/es970890r.
- Junge C. E. [1977] Fate of pollutants in the air and water environment, edited by: Suffet, I. H., Wiley, New York.
- Lohmann R. and G. Lammel [2004] Adsorptive and Absorptive Contributions to the Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons: State of Knowledge and Recommended Parametrization for Modeling. *Environ. Sci. Technol.*, 38, **14**, 3793-3803, DOI: 0.1021/es035337q
- Pankow J. F. [1987] Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere, *Atmos. Environ.*, **21**, 2275–2283, doi:10.1016/0004-6981(87)90363-5.
- Pankow J.F. [1994] An absorption-model of gas-particle partitioning of organic compounds in the atmosphere. *Atmos. Environ.*, vol. **28**, pp. 185-188.
- Pankow J.F. [1997] Partitioning of semi-volatile organic compounds to the air/water interface. *Atmospheric Environment*, vol. **31**, pp.927±929.